Confidence-Weighted Bipartite Ranking

نویسندگان

  • Majdi Khalid
  • Indrakshi Ray
  • Hamidreza Chitsaz
چکیده

Bipartite ranking is a fundamental machine learning and data mining problem. It commonly concerns the maximization of the AUC metric. Recently, a number of studies have proposed online bipartite ranking algorithms to learn from massive streams of class-imbalanced data. These methods suggest both linear and kernel-based bipartite ranking algorithms based on first and second-order online learning. Unlike kernelized ranker, linear ranker is more scalable learning algorithm. The existing linear online bipartite ranking algorithms lack either handling non-separable data or constructing adaptive large margin. These limitations yield unreliable bipartite ranking performance. In this work, we propose a linear online confidence-weighted bipartite ranking algorithm (CBR) that adopts soft confidence-weighted learning. The proposed algorithm leverages the same properties of soft confidence-weighted learning in a framework for bipartite ranking. We also develop a diagonal variation of the proposed confidence-weighted bipartite ranking algorithm to deal with high-dimensional data by maintaining only the diagonal elements of the covariance matrix. We empirically evaluate the effectiveness of the proposed algorithms on several benchmark and high-dimensional datasets. The experimental results validate the reliability of the proposed algorithms. The results also show that our algorithms outperform or are at least comparable to the competing online AUC maximization methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Active Sampling of Pairs and Points for Large-scale Linear Bipartite Ranking

Bipartite ranking is a fundamental ranking problem that learns to order relevant instances ahead of irrelevant ones. One major approach for bipartite ranking, called the pair-wise approach, tackles an equivalent binary classification problem of whether one instance out of a pair of instances should be ranked higher than the other. Nevertheless, the number of instance pairs constructed from the ...

متن کامل

Beating Ratio 0.5 for Weighted Oblivious Matching Problems

We prove the first non-trivial performance ratios strictly above 0.5 for weighted versions of the oblivious matching problem. Even for the unweighted version, since Aronson, Dyer, Frieze, and Suen first proved a non-trivial ratio above 0.5 in the mid-1990s, during the next twenty years several attempts have been made to improve this ratio, until Chan, Chen, Wu and Zhao successfully achieved a s...

متن کامل

Bayes-Optimal Scorers for Bipartite Ranking

We address the following seemingly simple question: what is the Bayes-optimal scorer for a bipartite ranking risk? The answer to this question helps elucidate the relationship between bipartite ranking and other established learning problems. We show that the answer is non-trivial in general, but may be easily determined for certain special cases using the theory of proper losses. Our analysis ...

متن کامل

Anomaly Ranking as Supervised Bipartite Ranking

The Mass Volume (MV) curve is a visual tool to evaluate the performance of a scoring function with regard to its capacity to rank data in the same order as the underlying density function. Anomaly ranking refers to the unsupervised learning task which consists in building a scoring function, based on unlabeled data, with a MV curve as low as possible at any point. In this paper, it is proved th...

متن کامل

A Large Deviation Bound for the Area Under the ROC Curve

The area under the ROC curve (AUC) has been advocated as an evaluation criterion for the bipartite ranking problem. We study large deviation properties of the AUC; in particular, we derive a distribution-free large deviation bound for the AUC which serves to bound the expected accuracy of a ranking function in terms of its empirical AUC on an independent test sequence. A comparison of our resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016